Vertical scales and dynamics of eddies in the Arctic Ocean’s Canada Basin
نویسندگان
چکیده
A decade of moored measurements from the Arctic Ocean’s northwestern Beaufort Gyre (collected as a component of the Beaufort Gyre Exploration Project) are analyzed to examine the range of mesoscale eddies over the water column and the dynamical processes that set eddy vertical scales. A total of 58 eddies were identified in the moored record, all anticyclones with azimuthal velocities ranging from 10 to 43 cm/s. These are divided into three classes based on core depths. Shallow eddies (core depths around 120 m) are shown to be vertically confined by the strong stratification of the halocline; typical thicknesses are around 100 m. Deep eddies (core depths around 1200 m) are much taller (thicknesses around 1300 m) owing to the weaker stratification at depth, consistent with a previous study. Eddies centered around mid-depths all have two cores (vertically aligned and separated in depth) characterized by velocity maxima and anomalous temperature and salinity properties. One core is located at the base of the halocline (around 200 m depth) and the other at the depth of the Atlantic Water layer (around 400 m depth). These double-core eddies have vertical scales between those of the shallow and deep eddies. The strongly decreasing stratification in their depth range motivates a derivation for the quasi-geostrophic adjustment of a nonuniformly stratified water column to a potential vorticity anomaly. The result aids in interpreting the dynamics and origins of the double-core eddies, providing insight into transport across a major water mass front separating Canadian and Eurasian Water.
منابع مشابه
Deep mesoscale eddies in the Canada Basin, Arctic Ocean
[1] Numerous eddies have been identified in a seven year time series of mooring observations in the Canada Basin, Arctic Ocean. We focus on a series of deep eddies centered at 1200 m depth, and occupying up to 1500 m of the water column. The deep eddies are found to be spatially localized, only ever being observed at one of four mooring sites of the Beaufort Gyre Observing System in the Canada ...
متن کاملEvolution of the eddy field in the Arctic Ocean’s Canada Basin, 2005–2015
The eddy field across the Arctic Ocean’s Canada Basin is analyzed using Ice-Tethered Profiler (ITP) and moored measurements of temperature, salinity, and velocity spanning 2005 to 2015. ITPs encountered 243 eddies, 98% of which were anticyclones, with approximately 70% of these having anomalously cold cores. The spatially and temporally varying eddy field is analyzed accounting for sampling bia...
متن کاملEffect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean
[1] An ice-ocean model has been used to investigate the effect of vertical mixing on the circulation of the Atlantic Water layer (AL) in the Arctic Ocean. The motivation of this study comes from the disparate AL circulations in the various models that comprise the Arctic Ocean Model Intercomparison Project (AOMIP). It is found that varying vertical mixing significantly changes the ocean’s strat...
متن کاملThe Effect of Vertical Mixing on the Atlantic Water Layer Circulation in the Arctic Ocean
An ice-ocean model has been used to investigate the effect of vertical mixing on the circulation of the Atlantic Water layer (AL) in the Arctic Ocean. The motivation of this study comes from the disparate AL circulations in the various models that comprise the Arctic Ocean Model Intercomparison Project (AOMIP). It is found that varying vertical mixing significantly changes the ocean’s stratific...
متن کاملDynamics in the Deep Canada Basin, Arctic Ocean, Inferred by Thermistor Chain Time Series
A 50-day time series of high-resolution temperature in the deepest layers of the Canada Basin in the Arctic Ocean indicates that the deep Canada Basin is a dynamically active environment, not the quiet, stable basin often assumed. Vertical motions at the near-inertial (tidal) frequency have amplitudes of 10– 20 m. These vertical displacements are surprisingly large considering the downward near...
متن کامل